Instructions:

- 1. The question paper has five parts namely A, B, C, D and E. Answer all the parts.
- 2. Part A has 15 Multiple Choice Questions, 5 Fill in the blanks
- 3. Part A should be answered continuously at one or two pages of Answer sheets and only first answer is considered for the marks in subsection I and II of Part A.
- 4. Use the graph sheet for the question on linear programming on PART E.

PART A

Answer ALL the multiple-choice questions I.

 $15 \times 1 = 15$

- The relation R in the set $A = \{1,2,3\}$ given by $R = \{(1,2)\}$ is
 - (a) Symmetric
- (b) Transitive
- (c) Reflexive
- (d) equivalence

2. Match the following:

A

В

a) Range of $cos^{-1} x$

 $i.(0,\pi)$

b) Range of $cot^{-1} x$

ii. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - \{0\}$

c) Range of $cosec^{-1} x$

iii. $[0,\pi]$

(d) a) -iii b)-ii c)-i

 $\sin(\tan^{-1} x), |x| < 1$ is equal to

(a)
$$\frac{\sqrt{1-x^2}}{x}$$

(b)
$$\frac{x}{\sqrt{1-x^2}}$$
 (c) $\frac{1}{1+x^2}$

$$(c) \frac{1}{1+x^2}$$

(d)
$$\frac{x}{\sqrt{1+x^2}}$$

- If a matrix has 8 elements, then the total number of the possible different order matrices are
 - (a) 8

(b) 4

(c) 6

- (d) 2
- If A is a non-singular matrix of order 3, then $|\operatorname{adj} A| =$
 - (a) |A|

- (b) $|A|^2$ (c) $|A|^3$
- (d) 3|A|

- The greatest integer function f(x) = [x], is
 - (a) Continuous but not differentiable at x = 1
- (b) Continuous and differentiable at x=1
- (c) Discontinuous but differentiable at x = 1
- (d) Discontinuous but not differentiable at x=1

7.	$y = \log_7(\log x)$ then $\frac{dy}{dx} =$				
	(a) $\frac{1}{x \log_7 \log x}$	(b) $\frac{1}{x \log x}$	(c) $\frac{\log 7}{x \log x}$	(d) $\frac{\log 7}{x}$	
8.	The point of inflection of the fun (a) (2, 8)	nction $y = x^3$ is (b) (0, 0)	(c) (1, 1)	(d) (-327)	
9.	If $f(x) = \int_{0}^{x} t \sin t dt$ then $f'(x)$ is	s			
	(a) $\cos x + x \sin x$	(b) $x \sin x$	(c) $x \cos x$	(d) $x\cos x + \sin x$	
10.	The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0$ is				
	(a) 3	(b)2	(c) 1	(d) not defined	
11.	Assertion (A): The two vectors $\vec{a} = 4i + 4j - 2k$ and $\vec{b} = 4i - 2j + 4k$ are perpendicular vectors.				
	Reason (B): If two vectors \vec{a} and \vec{b} are perpendicular, then $ \vec{a} = \vec{b} $				
	(a) (A) is false but (B) is true (b) (A) is true and (B) is true				
	(c) (A) is true but (B) is false) is false and (B) is fals		
12.	If \vec{a} and \vec{b} are unit vectors, such				
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	(c) π	(d) $\frac{\pi}{3}$	
13.	If a line has a direction ratio 2,-1,-2 then its direction cosines are				
	(a) $\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}$	(b) $\frac{2}{3}$, $\frac{1}{3}$, $\frac{-2}{3}$	(c) $\frac{2}{3}$, $\frac{-1}{3}$, $\frac{2}{3}$	(d) $\frac{-2}{3}$, $\frac{1}{3}$, $\frac{2}{3}$	
14.	If $P(A) = 0.4$, $P(B) = 0.5$ and $P(A) = 0.5$	$(A \cap B) = 0.25 \text{ then } P$	$\left(\frac{A}{B}\right) =$		
	(a) $\frac{1}{2}$	(b) $\frac{1}{4}$	(c) $\frac{5}{8}$	(d) $\frac{3}{4}$	
15.	Three cards are drawn successively, without replacement from a pack of 52 cards, the probability that two cards are kings and the third card drawn is an ace is				
	(a) $\frac{2}{5525}$	(b) $\frac{6}{5525}$	(c) $\frac{2}{1105}$	$(d) \frac{4}{1105}$	
	II. Fill in the blanks by choosing appropriate answer from those given in the bracket $5 \times 1 = 5$ $\left[\frac{3}{11}, 3, \frac{-\pi}{2}, -6, 6, 5\right]$				
	The value of $tan^{-1}(\sqrt{3}) - cot^{-1}$	'			
17.	The number of points at which $f(x) = [x]$ where $[x]$ is greatest integer function which is discontinuous in the interval (-2,2) is				
18.	The value of $\int_0^4 x - 1 dx$ is				

19. The value of λ for which the vectors 2i + 3j - 6k and $4i - \lambda j - 12k$ are collinear is _____

20. If A, B, C are three mutually exclusive and exhaustive events of an experiment such that

$$P(A) = 2P(B) = 3P(C)$$
, then $P(B)$ is equal to _____

PART - B

III. Answer any SIX questions

 $6 \times 2 = 12$

21. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, Find $A(adjA)$

- 22. Differentiate $(\log)^{\cos x}$ w.r.t x.
- 23. Find the rate of change of the area of a circle with respect to its radius 'r' when r = 3cm.
- 24. Find the local maximum value of the function $f(x) = x^2$
- 25. Evaluate $\int x \sin x dx$
- 26. Find the general solution of the differential equation $\frac{dy}{dx} + y = 1(y \ne 1)$
- 27. Find the projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}$.
- 28. Find the equation of the line in vector and in cartesian form that passes through the point (1,2,3) and is parallel to the vector $3\hat{i} + 2\hat{j} 2\hat{k}$
- 29. A coin is tossed three times. Consider the following events. E: head on third toss, F: heads on first two tosses. Determine P(E/F).

PART - C

V. Answer any SIX questions

 $6 \times 3 = 18$

- 30. Show that the relation R in the set R of real numbers, defined as $R = \{ (a, b): a \le b^2 \}$ is neither reflexive nor symmetric nor transitive.
- 31. Prove that $\cos^{-1}\left(\frac{12}{13}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{56}{65}\right)$
- 32. Express the matrix $A = \begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix}$ as the sum of symmetric and skew-symmetric matrix.
- 33. If $x = a \left(\cos t + \log \left(\tan \frac{t}{2} \right) \right)$, $y = a \sin t$, then prove that $\frac{dy}{dx} = \tan t$
- 34. Find the intervals in which the function f given by $f(x) = -2x^2 6x + 10$ is (i) strictly increasing (ii) strictly decreasing
- 35. Find $\int \frac{5x}{(x+1)(x^2-4)} dx$
- 36. Find the area of the triangle with the vertices A(1,1,2), B(2,3,5) and C(1,5,5) by using vectors cross product.
- 37. Find shortest distance between the lines $\vec{r} = \hat{i} + 2\hat{j} + \hat{k} + \lambda(\hat{i} \hat{j} + \hat{k})$ and $\vec{r} = 2\hat{i} \hat{j} \hat{k} + \mu(2\hat{i} + \hat{j} + 2\hat{k})$
- 38. A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

VI. Answer any FOUR questions

 $4 \times 5 = 20$

39. State whether the function f: R \rightarrow R defined by f(x)=3-4x is one-one or bijective. Justify your answer.

40. If
$$A = \begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 & -6 \end{bmatrix}$ verify that $(AB)' = B'A'$

41. Solve the following system of equations by matrix method:

$$x-y+z=4$$
, $2x+y-3z=0$ and $x+y+z=2$

42. If
$$y = \sin^{-1} x$$
, then prove that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 0$

43. Find the integral of
$$\frac{1}{\sqrt{x^2-a^2}}$$
 with respect to x and hence evaluate $\int \frac{1}{\sqrt{9x^2-16}} dx$

44. Find the area of the region bounded by the ellipse
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
 using integration

45. Solve the differential equation
$$(x + 3y^2) \frac{dy}{dx} = y \ (y > 0)$$

PART-E

VII. Answer the following questions

46. Prove that $\int_{-a}^{a} f(x)dx = \begin{cases} 2 \int_{0}^{a} f(x)dx & \text{if } f(x) \text{ is even} \\ 0 & \text{if } f(x) \text{ is odd} \end{cases}$ and hence evaluate $\int_{-1}^{1} x^{17} \cos^{4}x dx$

Solve the following problem graphically: Maximize and minimize z = 5x + 10y

Subject to the constraints: $x+2y \le 120$,

$$x+y \ge 60$$

 $x-2y \ge 0$ and $x \ge 0$, $y \ge 0$

(6)

47. Find the value of k,
$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases}$$
 is continuous at $x = \frac{\pi}{2}$

OR

If
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 verify that $A^3 - 6A^2 + 9A - 4I = 0$ and hence find A^{-1}
